Selection, scale-up and process simulation of filters in the new millennium

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is a book chapter.

Metadata Record: https://dspace.lboro.ac.uk/2134/6439

Version: Accepted for publication

Publisher: © World Markets Research Centre

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
SELECTION, SCALE-UP AND PROCESS SIMULATION OF FILTERS IN THE NEW MILLENIUM

E.S. Tarleton (e.s.tarleton@lboro.ac.uk)
Dept. Chemical Engineering, Loughborough University, Loughborough, Leics., LE11 3TU, UK.

ABSTRACT

This article details aspects of a new, generic approach to the selection, scale-up and process simulation of filtration and separation equipment. An interactive computer software package capable of identifying a likely separation device is outlined. Choosing the example of cake filters, the beneficial use of computer software and automated data acquisition in laboratory apparatus is illustrated. It is shown how the typical experimental data generated can be analysed in a consistent manner by computer software to generate scale-up data. The article also indicates how this information can subsequently be used within a family of dedicated process modelling software packages to simulate detailed filter cycle operations on batch and continuous cake filters.

The approach has general application within process and related industries and offers integration with manufacturers data via the internet and the world wide web.

KEYWORDS

Selection; Scale-up; Process simulation; Computer software; Automation; Internet.

INTRODUCTION

For the selection, scale-up, design or optimisation of solid/liquid separation equipment it is unusual to use fundamental theoretical relationships solely. Equipment is rarely specified without recourse to laboratory and pilot scale tests and the data produced can lead to erroneous scale-up and separator installation unless care and consistency are observed. Progressive developments1-7 have facilitated an integrated theoretical and experimental approach to this subject area. The overall philosophy with reference to filter selection, software assisted data analysis and process modelling is described here.

EQUIPMENT SELECTION USING pC-SELECT

Of the available procedures for the selection of solid/liquid separation, those involving a blend of rule-based protocols and user interaction have proved the most successful. Since the early 1990’s the commercially available software pC-SELECT1,7 has facilitated both a consistent procedure for the calculation of basic filtration and sedimentation parameters (such as cake formation and settling rates) and an interactive methodology for producing ranked lists of equipment potentially suited to a given duty. The software utilises databanks of ranked equipment characteristics and can be used in a variety of ways ranging from a single usage, through repeated ‘what if’ assessments, to sophisticated analyses of multiple feed batch plants. Taking the latter as an illustrative example, and assuming a feed rate equivalent to 15 m³ h⁻¹, Table 1 shows some basic sedimentation and filtration test results for five different feeds and a requirement for either solids deliquoring or washing.

By repeated use of the automated selection procedures in pC-SELECT, the data shown in Table 2 can be produced where the relative performance index for a deliquoring or washing operation can take a maximum value of 9. Inspection of Table 2 indicates that only the vacuum horizontal belt, tilting pan or table filter or the pressure Nutsche filter are best suited to processing four of the five feeds.
feeds. However, only the former three are capable of processing all five in an effective manner. Should only the un-flocculated feeds need to be processed, then it is likely that the vacuum filters will give slightly superior overall performance. Through other performance indices, pC-SELECT will also indicate that the pressure Nutsche filter is likely to give a better clarity liquid product, although any improvement may ultimately be marginal and a final selection may depend on other over-riding factors.

DATA GENERATION, ANALYSIS AND SCALE-UP

In order to acquire experimental data for initial equipment selection it is likely that relatively simple experimental apparatus, such as a 100 cm², manually operated leaf filter, is sufficient. However, for accuracy in scale-up it is likely that more sophisticated computer controlled apparatus is required. Several laboratory scale apparati capable of automated data acquisition during the filtration, washing, deliquoring and consolidation phases of a filter cycle have been developed. These facilitate sequential experiments over a range of pressure/flow regimes with a minimum of operator interference (see Figure 1 for an example).

The data generated allow the scale-up parameters needed for process modelling to be calculated and generally provide for accurate theoretical prediction due to the controlled manner of acquisition (e.g. Figure 2). Their consistent analysis can be aided by computer software. Using an expression test as an example, Figures 3 and 4 show sample displays of how the change from filtration to cake consolidation can be identified by the software user with the aid of interactive cursors and computer assisted suggestions for transition points. With the additional knowledge of basic experimental conditions the software package allows for the analysis of a single experiment to give eighteen characterising parameters including cake resistance, porosity and consolidation index. By repeated software analysis of a sequence of experiments over ranges of pressure the automatic calculation of scale-up constants for both filtration and consolidation processes is possible. Adding the scale-up parameters for washing and deliquoring phases provides the information for detailed process simulations.

PROCESS FILTER SIMULATION

With a knowledge of the type of separator and scale-up constants for the different phases of a filter cycle, it is possible to employ process simulations in order to assess likely equipment performance. Although full details of such simulations are beyond the scope of this article, Figure 5 illustrates in simplified form the basic steps (based on computer software developed by the authors). To be most effective a simulation must include well chosen calculation procedures and algorithms, be able to ensure input data correctness as far as this is possible and utilise interactive graphics facilities, whilst overcoming the sometimes natural reluctance to use computers.

In generic terms, at the start of a simulation the filter type and the required cycle phases are interactively defined by a user along with data storage file names. The information relevant to each phase is also interactively defined and the magnitude of the numbers entered is checked by the software as much as this is possible. The cycle calculations are then performed for the pre-defined sequential phases to give the necessary data which describe filter operation. These results are displayed either graphically or in tabular form on the computer screen and printed and/or saved to computer disk as appropriate (an example display from a diaphragm press filter cycle is shown in Figure 6). A typical simulation takes a few minutes including input of data such as solid/liquid properties, scale-up constants and the required process and product conditions.

CONCLUSIONS
The philosophy outlined in this paper points a way to an integrated package for filter selection, design and scale-up. To date developments have included several automated laboratory scale apparati and computer software capable of equipment selection, detailed data analysis for scale-up and process simulations for several batch pressure and continuous vacuum filters. The models used for calculations and simulations are based on fundamental theories and proven laboratory and process scale practical results. Their integration, both with each other and information contained on the internet and world wide web, is represented in Figure 7.

Use of the philosophy could prevent the implementation of equipment whose actual performance falls below anticipated operating demands, and certainly enables the user engineer to perform independent checks on equipment manufacturers design and performance claims. It is not the detailed results shown in this article that are necessarily important, but rather the potentially widespread implication of the underlying methodology to the process and related industries.

REFERENCES

FIGURES AND TABLES

Figure 1: Automated expression apparatus.

Figure 2: Typical comparison of experiment and expression theory\(^1\).

Cite paper as: Tarleton E.S., 2003, Selection, scale-up and simulation of filters in the new millennium, WMRC-CPI Technology, 60-64. A version of this paper was also published in Processing for China, 2001, 40-42.
Figure 3: Estimating the filtration to cake consolidation transition via software.  

Figure 4: Identifying the initial linear portion of a cake consolidation.
Start

Define filter type, names of files for input/output data, preferred units and the required cycle phases

Define conditions for each phase in the required cycle sequence

Perform filter cycle calculations to give relevant data

Display and/or print:
1) tabular results
2) graphical results

End

Cake formation phase(s)
Cake deliquoring phase(s)
Cake washing phase(s)
Cake consolidation phase(s)

Figure 5: Basic flowsheet for modular filter simulations.
Figure 6: Sample results from a diaphragm press simulation.
Figure 7: Outline schematic of the integration of equipment selection, scale-up and process simulation.
<table>
<thead>
<tr>
<th>Selection parameter</th>
<th># 1</th>
<th># 2</th>
<th># 3</th>
<th># 4</th>
<th># 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary objective</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D or W</td>
<td>D or W</td>
</tr>
<tr>
<td>Settling rate (cm s(^{-1}))</td>
<td>&lt; 0.1</td>
<td>&lt; 0.1</td>
<td>&lt; 0.1</td>
<td>0.1-5</td>
<td>&gt; 5</td>
</tr>
<tr>
<td>Clarity of supernatant</td>
<td>poor</td>
<td>poor</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>Sediment concentration (% v/v)</td>
<td>&lt; 2</td>
<td>&gt; 20</td>
<td>&gt; 20</td>
<td>2-20</td>
<td>2-20</td>
</tr>
<tr>
<td>Filter cake growth rate (cm min(^{-1}))</td>
<td>&lt; 0.02</td>
<td>&lt; 0.02</td>
<td>0.02-1</td>
<td>0.02-1</td>
<td>&gt; 1</td>
</tr>
</tbody>
</table>

D ≡ deliquored, W ≡ washed, # 5 is flocculated from # 4

Table 1: Objective and settling/filtration characteristics for five batch feeds.

<table>
<thead>
<tr>
<th>Equipment type</th>
<th># 1</th>
<th># 2</th>
<th># 3</th>
<th># 4</th>
<th># 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal belt or rotary tilting pan filter</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Rotary table filter</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Filter press</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Single leaf (Nutsche) pressure filter</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Multi- tubular element pressure filter</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Multi- vertical element leaf pressure filter</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Multi- horizontal element leaf pressure filter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Diaphragm filter press</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Single leaf (Nutsche) vacuum filter</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Tube press</td>
<td>-</td>
<td>8‘</td>
<td>8‘</td>
<td>8‘</td>
<td>4‘</td>
</tr>
<tr>
<td>Basket (pendulum) centrifuge</td>
<td>-</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Basket (peeler) centrifuge</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Circular basin thickener</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Screen (sieve bend) classifier</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4‘</td>
</tr>
<tr>
<td>Gravity Nutsche filter</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4‘ 7‘</td>
</tr>
</tbody>
</table>

marginally acceptable on selection criteria, ‘-’ ≡ unsuitable equipment

Table 2: Equipment rating criteria as identified by p\(^C\)-SELECT.